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Abstract—As HTTPS deployment grows, middlebox and an-
tivirus products are increasingly intercepting TLS connections to
retain visibility into network traffic. In this work, we present a
comprehensive study on the prevalence and impact of HTTPS in-
terception. First, we show that web servers can detect interception
by identifying a mismatch between the HTTP User-Agent header
and TLS client behavior. We characterize the TLS handshakes
of major browsers and popular interception products, which
we use to build a set of heuristics to detect interception and
identify the responsible product. We deploy these heuristics at
three large network providers: (1) Mozilla Firefox update servers,
(2) a set of popular e-commerce sites, and (3) the Cloudflare
content distribution network. We find more than an order of
magnitude more interception than previously estimated and with
dramatic impact on connection security. To understand why
security suffers, we investigate popular middleboxes and client-
side security software, finding that nearly all reduce connection
security and many introduce severe vulnerabilities. Drawing on
our measurements, we conclude with a discussion on recent
proposals to safely monitor HTTPS and recommendations for
the security community.

I . I N T R O D U C T I O N

When it comes to HTTPS, the security community is work-
ing at cross purposes. On the one hand, we are striving to harden
and ubiquitously deploy HTTPS in order to provide strong end-
to-end connection security [5], [20], [22], [23], [34], [51]. At
the same time, middlebox and antivirus products increasingly
intercept (i.e., terminate and re-initiate) HTTPS connections
in an attempt to detect and block malicious content that uses
the protocol to avoid inspection [6], [12], [15], [27]. Previous
work has found that some specific HTTPS interception products
dramatically reduce connection security [7], [12], [58]; however,
the broader security impact of such interception remains unclear.
In this paper, we conduct the first comprehensive study of
HTTPS interception in the wild, quantifying both its prevalence
in traffic to major services and its effects on real-world security.

We begin by introducing a novel technique for passively de-
tecting HTTPS interception based on handshake characteristics.
HTTPS interception products typically function as transparent
proxies: they terminate the browser’s TLS connection, inspect
the HTTP plaintext, and relay the HTTP data over a new TLS

connection to the destination server. We show that web servers
can detect such interception by identifying a mismatch between
the HTTP User-Agent header and the behavior of the TLS client.
TLS implementations display varied support (and preference
order) for cipher suites, extensions, elliptic curves, compression
methods, and signature algorithms. We characterize these
variations for major browsers and popular interception products
in order to construct heuristics for detecting interception and
identifying the responsible product.

Next, we assess the prevalence and impact of HTTPS
interception by applying our heuristics to nearly eight billion
connection handshakes. In order to avoid the bias inherent in
any single network vantage point, we analyzed connections for
one week at three major Internet services: (1) Mozilla Firefox
update servers, (2) a set of popular e-commerce websites, and
(3) the Cloudflare content distribution network. These providers
serve different types of content and populations of users, and
we find differing rates of interception: 4.0% of Firefox update
connections, 6.2% of e-commerce connections, and 10.9% of
U.S. Cloudflare connections were intercepted. While these rates
vary by vantage point, all are more than an order of magnitude
higher than previous estimates [27], [46].

To quantify the real-world security impact of the observed
interception, we establish a grading scale based on the TLS
features advertised by each client. By applying the metric
to unmodified browser handshakes and to the intercepted
connections seen at each vantage point, we calculate the
change in security for intercepted connections. While for
some older clients, proxies increased connection security, these
improvements were modest compared to the vulnerabilities
introduced: 97% of Firefox, 32% of e-commerce, and 54%
of Cloudflare connections that were intercepted became less
secure. Alarmingly, not only did intercepted connections
use weaker cryptographic algorithms, but 10–40% advertised
support for known-broken ciphers that would allow an active
man-in-the-middle attacker to later intercept, downgrade, and
decrypt the connection. A large number of these severely
broken connections were due to network-based middleboxes
rather than client-side security software: 62% of middlebox
connections were less secure and an astounding 58% had severe
vulnerabilities enabling later interception.

Finally, we attempt to understand why such a large number
of intercepted connections are vulnerable by testing the security
of a range of popular corporate middleboxes, antivirus products,
and other software known to intercept TLS. The default settings
for eleven of the twelve corporate middleboxes we evaluated
expose connections to known attacks, and five introduce
severe vulnerabilities (e.g., incorrectly validate certificates).
Similarly, 24 of the 26 client-side security products we tested
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reduce connection security, and two thirds introduce severe
vulnerabilities. In some cases, manufacturers attempted to
customize libraries or re-implement TLS, introducing negligent
vulnerabilities. In other cases, products shipped with libraries
that were years out of date. Across the board, companies are
struggling to correctly deploy the base TLS protocol, let alone
implement modern HTTPS security features.

Our results indicate that HTTPS interception has become
startlingly widespread, and that interception products as a class
have a dramatically negative impact on connection security. We
hope that shedding light on this state of affairs will motivate
improvements to existing products, advance work on recent
proposals for safely intercepting HTTPS [26], [38], [44], [54],
and prompt discussion on long-term solutions.

I I . B A C K G R O U N D

In this section, we provide a brief background on HTTPS
interception and describe the aspects of HTTP and TLS that are
relevant to our fingerprinting techniques. We refer the reader
to RFC 5280 [14] for a detailed description of TLS.

A. TLS Interception

Client-side software and network middleboxes that inspect
HTTPS traffic operate by acting as transparent proxies. They
terminate and decrypt the client-initiated TLS session, analyze
the inner HTTP plaintext, and then initiate a new TLS
connection to the destination website. By design, TLS makes
such interception difficult by encrypting data and defending
against man-in-the-middle attacks through certificate validation,
in which the client authenticates the identity of the destination
server and rejects impostors. To circumvent this validation,
local software injects a self-signed CA certificate into the client
browser’s root store at install time. For network middleboxes,
administrators will similarly deploy the middlebox’s CA
certificate to devices within their organization. Subsequently,
when the proxy intercepts a connection to a particular site, it
will dynamically generate a certificate for that site’s domain
name signed with its CA certificate and deliver this certificate
chain to the browser. Unless users manually verify the presented
certificate chain, they are unlikely to notice that the connection
has been intercepted and re-established.1

B. TLS Feature Negotiation

TLS clients and servers negotiate a variety of protocol
parameters during a connection handshake [14]. In the first
protocol message, Client Hello, the client specifies what TLS
version and features it supports. It sends ordered lists of
cipher suites, compression methods, and extensions—which
themselves frequently contain additional parameters, such as
supported elliptic curves and signature algorithms. The server
then selects a mutually agreeable choice from each list of
options. This extensibility facilitates the continuing evolution
of features and provides adaptability in the wake of new attacks.

1Contrary to widespread belief, public key pinning [19]—an HTTPS feature
that allows websites to restrict connections to a specific key—does not prevent
this interception. Chrome, Firefox, and Safari only enforce pinned keys when
a certificate chain terminates in an authority shipped with the browser or
operating system. The extra validation is skipped when the chain terminates in
a locally installed root (i.e., a CA certificate installed by an administrator) [34].
Internet Explorer and Edge do not support key pinning [39].

HTTPS Proxy Server
ClientHello

HTTP Request

Handshake Protocol: Client Hello
  Version: TLS 1.2 (0x0303)
  Cipher Suites (2 suites)
    Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xc02b)
    Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f)
  Extension: ec_point_formats
    Elliptic curves point formats (1)
      EC point format: uncompressed (0)
  Extension: elliptic_curves
    Elliptic curves (2 curves) 

   Elliptic curve: secp256r1 (0x0017)
      Elliptic curve: secp256r1 (0x0018)
  Extension: Application Layer Protocol Negotiation
  Extension: server_name

Handshake Protocol: Client Hello
  Version: TLS 1.0 (0x0301)
  Cipher Suites Length: 4
  Cipher Suites (2 suites)
    Cipher Suite: TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x0039)
    Cipher Suite: TLS_RSA_EXPORT_WITH_DES40_CBC_SHA (0x0011)
  Extension: server_name

Hypertext Transfer Protocol
  Get / HTTP/1.1\r\n
  Host: www.illinois.edu
  Connection: keep-alive\r\n
  User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko

ClientHello

Remainder of   TLS Handshake

Client 

Fig. 1: HTTPS Interception—Products monitor HTTPS
connections by acting as transparent proxies that terminate
the browser TLS session, inspect content, and establish a new
connection to the destination server. These proxies use different
TLS libraries than popular browsers, which allows us to detect
interception by identifying a mismatch between the HTTP
User-Agent header and TLS client behavior.

As of early 2016, there exist more than 340 cipher suites,
36 elliptic curves, 3 elliptic curve point formats, 28 signature
algorithms, and 27 extensions that clients can advertise [29],
[30]. In practice, browsers and security products use varying
TLS libraries and advertise different handshake parameters. As
we will show in Section III, these characteristic variations allow
us to uniquely identify individual TLS implementations based
on their handshakes.

C. HTTP User-Agent Header

The HTTP protocol allows the client and server to pass
additional information during a connection by including header
fields in their messages. For example, the client can include the
Accept-Charset: utf-8 header to indicate that it expects
content to be encoded in UTF-8. One standard client header
is the User-Agent header, which indicates the client browser
and operating system in a standardized format. There has been
significant prior study on User-Agent header spoofing. These
studies have largely found that end users do not spoof their own
User-Agent header [18], [45], [61]. For example, Eckersley
found that only 0.03% of connections with a Firefox User-
Agent supported features unique to Internet Explorer, indicating
spoofing [18]. Fingerprinting studies commonly trust the User-
Agent string [40], and we follow suit in this work.

I I I . T L S I M P L E M E N TAT I O N H E U R I S T I C S

Our methodology for identifying interception is based on
detecting a mismatch between the browser specified in the
HTTP User-Agent header and the cryptographic parameters
advertised during the TLS handshake (Figure 1). In this section,
we characterize the handshakes from popular browsers and
develop heuristics that determine whether a TLS handshake is
consistent with a given browser. We then go on to fingerprint
the handshakes produced by popular security products in order
to identify the products responsible for interception in the wild.

A. Web Browsers

We captured the TLS handshakes generated by the four
most popular browsers: Chrome, Safari, Internet Explorer,
and Firefox [57]. To account for older versions, differing
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operating systems, and varying mobile hardware, we generated
and captured handshakes in different environments using
BrowserStack [4], a cloud service that provides developers
with a variety of virtual machines for testing websites.2

We analyzed the non-ephemeral parameters advertised in
the TLS handshakes, finding that each browser family selects a
unique set of options, and that these options differ from those
used by both common libraries (e.g., OpenSSL) and popular
interception products.3 However, while each browser, library,
and security product produces a unique Client Hello message,
the parameters selected by browsers are not statically defined.
Instead, browsers alter their behavior based on hardware support,
operating system updates, and user preferences.

Instead of generating all possible permutations, we analyzed
when browsers select different parameters and developed a set
of heuristics that determine whether a specific handshake could
have been generated by a given browser. For example, none
of the four browsers have ever supported the TLS Heartbeat
extension [53]. If a browser connection advertises its support,
we know that the session was intercepted. On the other hand,
despite the fact that all four browsers have default support for
AES-based ciphers, the lack of these ciphers does not indicate
interception, because browsers allow users to disable specific
cipher suites. This methodology has the advantage of excluding
false positives that arise from uncommon user configurations.
However, it can yield false negatives if a proxy copies TLS
parameters from the original client connection.

We describe the heuristics for each browser below:

Mozilla Firefox Firefox was the most consistent of the four
browsers, and by default, each version produces a nearly
identical Client Hello message regardless of operating system
and platform. All parameters, including TLS extensions, ciphers,
elliptic curves, and compression methods are predetermined
and hard-coded by the browser. Users can disable individual
ciphers, but they cannot add new ciphers nor reorder them. To
determine whether a Firefox session has been intercepted, we
check for the presence and order of extensions, cipher suites,
elliptic curves, EC point formats, and handshake compression
methods. Mozilla maintains its own TLS implementation,
Mozilla Network Security Services (NSS) [42]. NSS specifies
extensions in a different order than the other TLS libraries
we tested, which allows it to be easily distinguished from
other implementations. The library is unlikely to be directly
integrated into proxies because it is seldom used in server-side
applications.

Google Chrome Chrome was one of the most challenging
browsers to fingerprint because its behavior is dependent on
hardware support and operating system. For example, Chrome
prioritizes ChaCha-20-based ciphers on Android devices that
lack hardware AES acceleration [10] and Chrome on Win-
dows XP does not advertise support for ECDSA keys at all.
These optimizations result in several valid cipher and extension

2We analyzed Chrome 34–50 and Firefox 3–46 on Windows XP, 7, 8, 8.1,
and 10 and Mac OS X Snow Leopard, Lion, Mountain Lion, Mavericks,
Yosemite, and El Capitan. We additionally captured handshakes from Apple
Safari 5–9, Internet Explorer 6–11, Microsoft Edge, and the default Android
browser on Android 4.0–5.0. In total, we collected 874 fingerprints.

3We compare the presence and order of cipher suites, extensions, compression
methods, elliptic curves, signature algorithms, and elliptic curve point formats.

orderings for each version of Chrome, and furthermore, users
can disable individual cipher suites. We check for ciphers and
extensions that Chrome is known to not support, but do not
check for the inclusion of specific ciphers or extensions, nor
do we validate their order. When appropriate, we check the
presence and order of elliptic curves, compression methods,
and EC point formats. We note that because Chrome uses
BoringSSL, an OpenSSL fork, connections have a similar
structure to OpenSSL. However, Chrome supports considerably
fewer options, including a subset of the default extensions,
ciphers, and elliptic curves advertised by OpenSSL.

Microsoft Internet Explorer and Edge Internet Explorer is
less consistent than the other browsers for two reasons: (1)
administrators can enable new ciphers, disable default ciphers,
and arbitrarily reorder cipher suites through Windows Group
Policy and registry changes, and (2) IE uses the Microsoft
SChannel library, an OS facility which behaves differently
depending on both Windows updates and browser version.
Because of this additional flexibility, it is hard to rule out
handshakes that include outdated ciphers, so we introduce
a third categorization, unlikely, which we use to indicate
configurations that are possible but improbable in practice (e.g.,
including an export-grade cipher suite). We note that minor
OS updates alter TLS behavior, but are not indicated by the
HTTP User-Agent header. We mark behavior consistent with
any OS update as valid. SChannel connections can by uniquely
identified because SChannel is the only TLS library we tested
that includes the OCSP status request extension before the
supported groups and EC point formats extensions.

Apple Safari Apple Safari ships with its own TLS imple-
mentation, Apple Secure Transport, which does not allow user
customization. The order of ciphers and extensions is enforced
in code. While extension order does not vary, the NPN, ALPN,
and OCSP stapling extensions are frequently excluded, and the
desktop and mobile versions of Safari have different behavior.
One unique aspect of Secure Transport is that it includes the
TLS_EMPTY_RENEGOTIATION_INFO_SCSV cipher first,
whereas the other libraries we investigated include the cipher
last. Similar to Microsoft, Apple has changed TLS behavior in
minor OS updates, which are not indicated in the HTTP User-
Agent header. We allow for any of the updates when validating
handshakes, and we check for the presence and ordering of
ciphers, extensions, elliptic curves, and compression methods.

B. Fingerprinting Security Products

While our heuristics enable us to detect when interception is
occurring, they do not indicate what intercepted the connection.
To identify products used in the wild, we installed and
fingerprinted the Client Hello messages generated by well-
known corporate middleboxes (Figure 3), antivirus software
(Figure 4), and other client-side software previously found to
intercept connections (e.g., SuperFish [8]). In this section, we
describe these products.

We generated a fingerprint for each product by hashing
the non-ephemeral parameters advertised in the Client Hello
message (i.e., version, ciphers, extensions, compression meth-
ods, elliptic curves, and signature methods). When we detect
that a handshake is inconsistent with the indicated browser,
we check for an exact match with any of the fingerprints we
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Vantage Point % HTTPS Connections Intercepted
No Interception Likely Confirmed

Cloudflare 88.6% 0.5% 10.9%
Firefox 96.0% 0.0% 4.0%
E-commerce 92.9% 0.9% 6.2%

Fig. 2: Detecting Interception—We quantify HTTPS intercep-
tion at three major Internet services. We estimate that 5–10%
of connections are intercepted.

collected. This strategy has several potential weaknesses. First,
multiple products could share a single fingerprint. This seems
particularly likely given that developers are likely to use one
of a small number of popular TLS libraries (e.g., OpenSSL).
Second, if products allow customization, then fingerprints of the
default configuration will not match these customized versions.

Surprisingly, we find that none of the browsers nor the
107 products we manually investigated shared fingerprints,
except for eight pieces of unwanted software that all use
the Komodia Redirector SDK [32]. In other words, these
fingerprints uniquely identify a single product. None of the
client-side security products we tested allow users to customize
TLS settings. However, many of the corporate middleboxes
allow administrators to specify custom cipher suites. In this
situation, we would be able to detect that interception is
occurring, but not identify the responsible product.

Middleboxes and Corporate Proxies Nearly every major
networking hardware manufacturer—including Barracuda, Blue
Coat, Cisco, and Juniper—produces middleboxes that support
“SSL Inspection”. These devices allow organizations to intercept
TLS traffic at their network border for analysis, content filtering,
and malware detection. In March 2015, Dormann documented
products from nearly 60 manufacturers that advertise this
functionality [15]. We configured and fingerprinted twelve
appliance demos from well-known manufacturers (e.g., Cisco
and Juniper) and anecdotally popular companies (e.g., A10 and
Forcepoint), per Figure 3. We note one conspicuous absence:
ZScaler SSL Inspection. ZScaler provides a cloud-based SSL
inspection service, but did not provide us with a trial or demo.

Antivirus Software We installed, tested, and fingerprinted
popular antivirus products based on the software documented by
de Carné de Carnavalet and Mannan [12], products previously
found to be intercepting connections [27], [46], and a report
of popular antivirus products [47]. Products from 13 of the
29 vendors we installed inject a new root certificate and actively
intercept TLS connections. We list the products that intercept
connections in Figure 4.4

Unwanted Software and Malware Motivated by recent
reports of unwanted software intercepting TLS connections,
we fingerprinted the Komodia SDK [32], which is used by
Superfish, Qustodio, and several pieces of malware [8], [56],
and the NetFilter SDK [1], which is used by PrivDog.

4We tested and found that the following products did not intercept TLS
connections: 360 Total, Ahnlabs V3 Internet Security, Avira AV 2016, Comodo
Internet Security, F-Secure Safe, K7 Total Security, Malwarebytes, McAfee
Internet Security, Microsoft Windows Defender, Norton Security, Panda Internet
Security 2016, Security Symantec Endpoint Protection, Tencent PC Manager,
Trend Micro Maximum Security 10, and Webroot SecureAnywhere.

We tested products in January–March, 2016. We are
publishing our browser heuristics and product fingerprints at
https://github.com/zakird/tlsfingerprints.

I V. M E A S U R I N G T L S I N T E R C E P T I O N

We measured global interception rates by deploying our
heuristics at three network vantage points: Mozilla Firefox
update servers, a set of popular e-commerce websites, and the
Cloudflare content distribution network. We observe 7.75 billion
TLS handshakes across the three networks. By deploying the
heuristics on different networks, we avoid the bias inherent of
any single vantage point. However, as we will discuss in the
next section, we find varying amounts of interception and abuse
on each network. Below, we describe each perspective in detail:

Firefox Update Servers Firefox browsers routinely check for
software updates by retrieving an XML document from a central
Mozilla server over HTTPS. This check uses Firefox’s standard
TLS library (Mozilla NSS) and occurs every 24 hours while
the browser is running and on browser launch if the last update
occurred more than 24 hours prior. We used Bro [49] to monitor
connections to aus5.mozilla.org—the update server used
by Firefox versions 43–48—between February 14–26, 2016.
During this period, we observed 4.36 billion connections from
45K ASes and 243 of the 249 ISO-defined countries. Because
we collected traffic using an on-path monitor instead of on
the web server, we do not have access to the HTTP User-
Agent header. However, only specific versions of Firefox are
configured to connect to the server. Instead of looking for a
mismatch with the HTTP User-Agent, we look for a mismatch
between TLS handshake and any of the Firefox versions
configured to connect to the server. There is no user-accessible
content available on the site and there should be negligible
other traffic. This vantage point provides one of the cleanest
perspectives on clients affected by TLS interception. However,
it only provides data for Firefox, one of the browsers believed
to be least affected by client-side interception software [12].

Popular E-commerce Sites During two weeks in August and
September 2015, a set of popular e-commerce sites hosted
JavaScript that loaded an invisible pixel from an external
server that recorded the raw TLS Client Hello, HTTP User-
Agent string, and client HTTP headers. This perspective sees
traffic from all browsers, but may suffer from falsified User-
Agent headers. However, because the measurement required
JavaScript execution, the dataset excludes simple page fetches.
The sites have an international presence, but the connections
we observe are likely skewed towards desktop users because
the e-commerce provider has popular mobile applications.
The dataset has the added benefit that it contains HTTP
headers beyond User-Agent, which allow another avenue for
detecting interception: looking for proxy related headers (e.g.,
X-Forwarded-For and X-BlueCoat-Via) and the modifica-
tions documented by Weaver et al. [60].

Cloudflare Cloudflare is a popular CDN and DDoS protection
company that serves approximately 5% of all web traffic [25].
Cloudflare provides these services by acting as a reverse
proxy. Clients connect to one of Cloudflare’s servers when
accessing a website, which serve cached content or proxy
the connection to the origin web server. We logged the raw
TLS Client Hello messages and HTTP User-Agent for a
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Product Grade Validates
Certificates

Modern
Ciphers

Advertises
RC4

TLS
Version Grading Notes

A10 vThunder SSL Insight F 3 5 Yes 1.2 Advertises export ciphers
Blue Coat ProxySG 6642 A* 3 3 No 1.2 Mirrors client ciphers
Barracuda 610Vx Web Filter C 3 5 Yes 1.0 Vulnerable to Logjam attack
Checkpoint Threat Prevention F 3 5 Yes 1.0 Allows expired certificates
Cisco IronPort Web Security F 3 3 Yes 1.2 Advertises export ciphers
Forcepoint Websense Web Filter C 3 3 Yes 1.2 Advertises RC4 ciphers
Fortinet FortiGate 5.4 C 3 3 No 1.2 Vulnerable to Logjam attack
Juniper SRX Forward SSL Proxy C 3 5 Yes 1.2 Advertises RC4 ciphers
Microsoft Threat Mgmt. Gateway F 5 5 Yes SSLv2 No certificate validation
Sophos SSL Inspection C 3 5 Yes 1.2 Advertises RC4 ciphers
Untangle NG Firewall C 3 5 Yes 1.2 Advertises RC4 ciphers
WebTitan Gateway F 5 3 Yes 1.2 Broken certificate validation

Fig. 3: Security of TLS Interception Middleboxes—We evaluate popular network middleboxes that act as TLS interception
proxies. We find that nearly all reduce connection security and five introduce severe vulnerabilities. *Mirrors browser ciphers.

Product OS Browser MITM Grade Validates
Certificate

Modern
Ciphers

TLS
Version Grading Notes

IE Chrome Firefox Safari

Avast . . .
AV 11 Win  # # A* 3 3 1.2
AV 10 Win    A* 3 3 1.2
AV 11.7 Mac    F 3 3 1.2 Advertises DES

AVG . . .
Zen 1.41 Win   # C 3 3 1.2 Logjam, POODLE
Internet Security 2015–6 Win   # C 3 3 1.2 Advertises RC4

Bitdefender . . .
Internet Security 2016 Win    C 3 5 1.2 Logjam, POODLE
Total Security Plus 2016 Win    C 3 5 1.2 Logjam, POODLE
AV Plus 2015–16 Win    C 3 5 1.2 Logjam, POODLE
AV Plus 2013 Win    F 3 5 1.0 Advertises DES, RC2

Bullguard . . .
Internet Security 16 Win    C 3 3 1.2 POODLE vulnerability
Internet Security 15 Win    F 3 3 1.0 Advertises DES

CYBERsitter . . .
CYBERsitter 11 Win    F 5 5 1.0 No certificate validation

Dr. Web . . .
Security Space 10 Win    C 3 5 1.2 Advertises RC4
Antivirus 11 Mac    F 3 5 1.0 Export ciphers

ESET . . .
NOD32 AV 9 Win    F 5 5 1.2 No certificate validation

G DATA . . .
Total Security 2015 Win    F 3 5 1.2 Anonymous ciphers
Internet Security 2015 Win    F 3 5 1.2 Anonymous ciphers
Antivirus 2015 Win    F 3 5 1.2 Anonymous ciphers

Kaspersky . . .
Internet Security 16 Win    C 3 3 1.2 CRIME vulnerability
Total Security 16 Win    C 3 3 1.2 CRIME vulnerability
Internet Security 16 Mac    F 5 3 1.2 Broken cert. validation

KinderGate . . .
Parental Control 3 Win    F 3 5 1.0 No certificate validation

Net Nanny . . .
Net Nanny 7 Win    F 5 5 1.2 No certificate validation
Net Nanny 7 Mac    F 5 5 1.0 No certificate validation

PC Pandora . . .
PC Pandora 7 Win  # # F 3 5 1.2 No certificate validation

Qustodio . . .
Parental Control 2015 Mac    F 3 3 1.0 Advertises DES

# No Interception (connection allowed)  Connections Intercepted *Mirrors browser ciphers

Fig. 4: Security of Client-side Interception Software—We evaluate and fingerprint popular antivirus products, finding that 13
of 29 intercept TLS connections. All but one client-side product degrades client security.
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Fig. 5: CDF of Interception Fingerprints—We fingerprint
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sages to track the products that perform interception. Ten
fingerprints account for 69% of the intercepted e-commerce
traffic, 69% of Firefox update traffic, and 42% of Cloudflare
traffic.

Fingerprint Description % Total

E
-c

om
m

er
ce Unknown 17.1%

Avast Antivirus 10.8%
Unknown 9.4%
Blue Coat 9.1%
Unknown 8.3%

C
lo

ud
fla

re

Avast Antivirus 9.1%
AVG Antivirus 7.0%
Unknown. Likely AV; mainly Windows 10/Chrome 47 6.5%
Kaspersky Antivirus 5.0%
BitDefender Antivirus 3.1%

Fi
re

fo
x

Bouncy Castle (Android 5) 26.3%
Bouncy Castle (Android 4) 21.6%
Unknown. Predominantly India 5.0%
ESET Antivirus 2.8%
Dr. Web Antivirus 2.6%

Fig. 6: Top Interception Fingerprints—We show the prod-
ucts responsible for the most interception at each vantage point.

random 0.5% sample of all TLS connections to Cloudflare’s
frontend between May 13–20, 2016. We measure interception
by detecting mismatches between the HTTP User-Agent and
the TLS handshake. Cloudflare provides a more representative
sample of browsers than the Firefox update servers. However,
one of Cloudflare’s foremost goals is to prevent DDoS attacks
and other abuse (e.g., scripted login attempts), so the data is
messier than the other two datasets, and a portion of connections
likely have falsified HTTP User-Agent headers.

V. R E S U LT S

Our three vantage points provide varying perspectives on
the total amount of interception: 4.0% of Firefox update
connections, 6.2% of the e-commerce connections, and 10.9%
of Cloudflare sessions in the United States (Figure 2). In all
cases, this is more than an order of magnitude higher than
previously estimated [27], [46].

A. Firefox Update Server

HTTPS connections for 4.0% of Firefox clients were inter-
cepted, which is the lowest rate among the three perspectives.

Detection Method Firefox E-commerce Cloudflare

Invalid Extensions 16.8% 85.6% 89.0%
Invalid Ciphers 98.1% 54.2% 68.7%
Invalid Version – 2.0% –
Invalid Curves – 5.5% 9.4%
Invalid Extension Order 87.7% 33.9% 40.4%
Invalid Cipher Order 98.8% 21.2% 21.1%
Missing Required Ext. 97.9% 91.1% 50.9%
Injected HTTP Header – 14.0% –

Fig. 7: Handshake Mismatches—We break down the mis-
matches used to detect intercepted sessions. For more than 85%
of intercepted connections, we detect an invalid handshake
based on the use of unsupported extensions, ciphers, or curves.
Some features were unavailable for Firefox and Cloudflare.

Interception is likely less common for Firefox users because the
browser ships with its own certificate store, whereas Internet
Explorer, Chrome, and Safari use the host operating system’s
root store. Prior work [12] and our own testing (Figure 4) both
find that some antivirus products (e.g., Avast) will intercept
connections from these other browsers but neglect to proxy
Firefox sessions. In corporate environments, administrators can
separately install additional root authorities in Firefox [41],
but the added step may dissuade organizations that proxy
connections from deploying the browser.

Sources of Interception The two most common interception
fingerprints belong to the default configurations of Bouncy Cas-
tle on Android 4.x and 5.x, and account for 47% of intercepted
clients (Figure 5). These fingerprints were concentrated in large
ASes belonging to mobile wireless providers, including Verizon
Wireless, AT&T, T-Mobile, and NTT Docomo (a Japanese
mobile carrier). As can be seen in Figure 9, 35% of all Sprint
and 25.5% of all Verizon Firefox connections (including non-
intercepted) matched one of the two fingerprints. It is possible
to intercept TLS connections on Android using the VPN
and/or WiFi permissions. However, given the default values,
it is unclear exactly which Android application is responsible
for the interception. Bouncy Castle on Android 5.x provides
reasonable ciphers equivalent to a modern browser; on Android
4.x, Bouncy Castle advertises export-grade cipher suites, making
it vulnerable to interception by an on-path attacker. The third
most common fingerprint accounts for 5.3% of Firefox traffic.
We were not able to identify the product associated with the
fingerprint but note that nearly half of its traffic occurred in
India and its diurnal and weekend patterns are consistent with
home antivirus or malware.

Temporal Pattern The number of raw intercepted connections
mirrors the diurnal pattern of all Firefox traffic. As can be seen
in Figure 8, there are typically more connections on weekdays,
and we observe the peak number of connections on weekday
mornings. This intuitively aligns with the first computer access
of the day triggering a connection to the Firefox update
server. Oddly, though, the percentage of intercepted traffic
is inversely proportional to total traffic, peaking near midnight
and in the early morning. When we remove the two Android
Bouncy Castle fingerprints, the total percentage of intercepted
connections decreases by 47% and no longer peaks during these
off hours. We suspect that the interception peaks are the result
of mobile devices remaining on at night when other desktop
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Fig. 8: Temporal Variation in Firefox Interception—We
observe the highest amount of raw interception during times of
peak traffic, but the highest interception rates during periods
of low total traffic. This is likely because the two largest
fingerprints are associated with mobile carriers and will update
at night when desktop computers are powered off. Excluding
these two fingerprints, interception remains relatively stable.
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Fig. 9: ASes with Highest Firefox Interception—We find
that 8 ASes have significantly higher interception rates within
the top 500 ASes. All but one are mobile providers.

computers are powered off. Weekend interception rates level
out around 2% and increase during the weekdays, suggesting
the presence of corporate TLS proxies.

Geographic Disparities Interception is more prevalent in
several countries (Figure 10). For example, 15% of TLS
connections from Guatemala were intercepted, a rate 3–4
times higher than the global average. This is primarily due
to COMCEL, a mobile provider responsible for 34.6% of all
Guatemalan update server traffic, having a 32.9% interception
rate. Greenland has the second highest interception rate (9.9%),
which is caused by a single AS: TELE Greenland. Nearly
half of the interception is performed by a Fortigate middlebox.
The third most commonly intercepted country, South Korea,
is one of the most highly mobile-connected countries in
the world [55]. In general, large ASes with above average
interception belong to mobile providers and fluctuate between
20% to 55% interception depending on the time of day, as
seen in Figure 9. The single exception is Marubeni OKI
Network Solutions, which maintains a consistent interception
rate around 50% that begins in the morning and ends near
midnight everyday. It is unclear what behavior results in this
temporal pattern.

Country MITM % Country MITM %

Guatemala 15.0% Kiribati 8.2%
Greenland 9.9% Iran 8.1%
South Korea 8.8% Tanzania 7.3%
Kuwait 8.5% Bahrain 7.3%
Qatar 8.4% Afghanistan 6.7%

Fig. 10: Countries with Highest Firefox Interception—We
show the ten countries with the highest interception rates when
connecting to the Mozilla update server. Countries with above
average interception rates generally have a large amount of
traffic intercepted by a single, dominant mobile provider.

B. Popular E-commerce Sites

The e-commerce dataset is composed of visits to set of
popular e-commerce websites and is not limited to a specific
browser version. To account for this, we parsed the HTTP User-
Agent header and identified mismatches between the announced
browser and TLS handshake. We observed 257K unique User-
Agent headers, and successfully parsed the header for 99.5% of
connections. The browsers we fingerprinted account for 96.1%
of connections; 2.5% belong to browsers we did not fingerprint
and 1.4% are from old browser versions.

We find that 6.8% of connections were intercepted and
another 0.9% were likely intercepted, but cannot be definitively
classified. For the connections where we could detect a specific
fingerprint, 58% belong to antivirus software and 35% to
corporate proxies. Only 1.0% of intercepted traffic is attributed
to malware (e.g., SuperFish), and the remaining 6% belong
to miscellaneous categories. The three most prevalent known
fingerprints belong to Avast Antivirus, Blue Coat, and AVG
Antivirus, which account for 10.8%, 9.1%, and 7.6% of
intercepted connections, respectively.

The e-commerce dataset also includes HTTP headers,
which allow us to identify a subset of connections that were
intercepted by network middleboxes, but do not match any our
existing fingerprints. We find proxy-related headers in 14.0%
of invalid handshakes, most prominently X-BlueCoat-Via,
Via, X-Forwarded-For, and Client-IP. We additionally use
these headers to detect interception. We detected 96.1% of
interception based on a version mismatch or the presence of
invalid extensions or ciphers. Another 2.2% of intercepted
connections lacked expected extensions, 0.7% used invalid
cipher or extension ordering, and 1.6% contained proxy-related
HTTP headers (Figure 7).

Chrome accounts for 40.3% of TLS traffic, of which 8.6%
was intercepted, the highest interception rate of any browser. On
the other extreme, only 0.9% of Mobile Safari connections were
intercepted. Interception is far more prominent on Windows,
where we see 8.3%–9.6% interception compared to 2.1% on
Mac OS. This is likely because most corporate users use
Windows in the workplace, and many antivirus products that
perform interception are Windows-based. We summarize these
results in Figure 13.

Falsified User-Agents It is possible that some connections in
the e-commerce dataset have falsified User-Agents headers,
which would artificially inflate the interception rate. We
intuitively expect that handshakes belonging to interception
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Fig. 11: Temporal Variation in Cloudflare Interception—
We observe the highest amount of raw interception during times
of peak traffic, but the highest interception rates during periods
of low total traffic. This is likely due to higher percentages of
automated bot traffic where the User-Agent header is spoofed.

Network Type No Interception Likely Confirmed

Residential/Business 86.0% 0.4% 13.6%
Cell Provider 94.1% 0.1% 5.8%

Fig. 12: U.S. Network Breakdown—We show the Cloudflare
interception rates for types of U.S. networks.

products will have a larger number of associated User-Agents
than a custom crawler with a falsified User-Agent. All but
a handful of the TLS products we investigated have at least
50 associated User-Agents, and at the extreme, Avast Antivirus
and Blue Coat’s corporate proxy had 1.8K and 5.2K associated
User-Agents, respectively. When we excluded interception
fingerprints associated with less than 50 User-Agents, the global
interception rate dropped from 6.8% to 6.2%. Given this modest
decrease, we suspect that the mismatches we detect are due to
interception instead of spoofed User-Agents. However, we take
a conservative route and restrict our analysis to the 6.2%.

During our analysis, we noted two irregularities. First,
nearly 3 million connections (approximately 75% of which
had a Blue Coat header) used the generic User-Agent string
“Mozilla/4.0 (compatible;)”). Cisco has documented that
Blue Coat devices will frequently mask browser User-Agents
with this generic agent string [31]. Despite knowing Blue Coat
devices intercept these TLS connections, we take the most
conservative approach and exclude these connections from our
analysis because we do not know what percentage of devices
behind the proxy would have been identifiable. However, we
note that if we assume the same proportion of identifiable
browsers as the general population (95.6%), Blue Coat would
be the second largest fingerprint and the total percentage of
connections intercepted would rise from 6.2% to 7.0%. Second,
we find that over 90% of Internet Explorer connections on
Windows XP appear intercepted because they include modern
ciphers and extensions that were not previously documented on
XP, nor that we could reproduce. We exclude these connections.

C. Cloudflare

The Cloudflare network provides perhaps the most represen-
tative view of global HTTPS traffic, but also the messiest. We
initially observe a 31% interception rate, which is 3–7 times

higher than the other vantage points. This elevated interception
rate is likely due to abuse (e.g., login attempts or content
scraping) and falsified User-Agent headers—some of the very
types of requests that Cloudflare protects against. The Firefox
server relied on only Firefox browsers accessing an obscure
update server and the e-commerce websites required JavaScript
execution in order to record a TLS connection. In contrast, the
Cloudflare data reflects all TLS connections across a broad
range of websites, so even simple command line utilities such
as wget and curl can appear in the Cloudflare dataset with
falsified User-Agent headers.

We take several steps to account for this abuse. First, we
removed fingerprints associated with fewer than 50 unique User-
Agent headers. Next, we limited our analysis to the 50 largest
ASes that are not cloud or hosting providers. Unfortunately,
even after this filter, we still observe an artificially high
interception rate ranging from 11% in the Americas to 42%
in Asia. We find that while large ASes in the U.S. have clear
purposes, the majority of networks in Europe and Asia do
not. In Asia, numbers varied widely and most ASes had little
description. In Europe, ASes would frequently span multiple
countries and contain requests that appeared to from both home
users and hosting providers. We limit our analysis to the ASes
from the top 50 that were located in the United States and
primarily serve end users. While this reduces the scope of the
dataset, there are lower interception rates in the U.S. compared
to any other region, providing a conservative lower bound.

In the U.S., we observe a 10.9% interception rate, with
a stark contrast between mobile ASes (5.2–6.5%) and res-
idential/enterprise ASes 10.3–16.9%), per Figure 12. Four
of the top five handshake fingerprints belong to antivirus
providers: Avast, AVG, Kaspersky, and BitDefender, which
are also prominent on the e-commerce sites. The remaining
unidentified fingerprint primarily occurs for Chrome 47 on
Windows 10. Despite the alignment with a specific browser
version and OS—which might indicate an incorrect heuristic—
we confirm that this handshake cannot be produced by Chrome
and advertises 80 cipher suites including IDEA/CAMELLIA,
diverging significantly from the Chrome family. The fingerprint
also occurs consistently across non-mobile ASes and peaks
usage during evening hours, suggesting malware or antivirus
software. These five fingerprints account for 31% of intercepted
traffic (Table 5).

Similar to Firefox updates, the total amount of HTTPS
interception correlates with total HTTPS traffic, peaking in the
middle of the day and declining during evening hours, but with
the highest interception rates at night (Figure 11). This might
be due to mobile traffic as we saw for Firefox but could also
indicate the presence of bot traffic.

D. Results Summary and Validation

We can partially validate our methodology by checking
whether we failed to detect any connections that included
proxy-related HTTP headers as intercepted. We find that 1.6%
of the e-commerce connections included proxy headers, but
did not have evidence of interception in their TLS handshakes.
This suggests that the methodology catches the vast majority
of interception, but it does miss some edge cases.
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E-commerce Sites

Browser All Traffic Intercepted Of Intercepted

Chrome 40.3% 8.6% 56.2%
Explorer 16.8% 7.4% 19.6%
Firefox 13.5% 8.4% 18.2%
Safari 10.2% 2.1% 3.4%
Chromium 7.6% 0.1% 0.1%
Mobile Safari 7.6% 0.9% 1.1%
Other 4.0% 4.0% 2.4%

OS All Traffic Intercepted Of Intercepted

Windows 7 23.3% 9.6% 56.6%
Windows 10 22.5% 9.3% 14.3%
iOS 17.3% 0.1% 1.1%
Mac OS 15.8% 2.1% 6.5%
Android 9.4% 1.0% 0.5%
Windows 8.1 6.9% 8.3% 15.8%
Other 4.8% 21.4% 15.2%

Cloudflare

Browser All Traffic Intercepted Of Intercepted

Chrome 36.2% 14.7% 48.8%
Mobile Safari 17.5% 1.9% 3.3%
Explorer 14.9% 15.6% 21.2%
Safari 8.9% 6.5% 5.3%
Firefox 8.5% 18.2% 14.2%
Mobile Chrome 8.4% 4.7% 3.6%
Other 5.6% 7.0% 3.6%

OS All Traffic Intercepted Of Intercepted

Windows 7 23.9% 13.4% 29.2%
Windows 10 22.9% 13.1% 27.4%
iOS 17.5% 2.0% 3.2%
Mac OS 16.0% 6.6% 9.6%
Android 9.5% 4.8% 4.2%
Windows 8.1 4.9% 24.4% 11.0%
Other 5.3% 31.7% 15.4%

Fig. 13: OS and Browser Breakdown—We show the breakdown of all traffic, the amount of traffic intercepted, and percentage
of all interception that each browser and operating system accounts for across both the e-commerce and Cloudflare vantage points.

To verify that our heuristics aren’t incorrectly classifying
valid handshakes, we investigated why our heuristics marked
connections as intercepted. We detected more than 85% of
intercepted connections based on the presence of known
unsupported ciphers or extensions, rather than a missing
extension or invalid ordering. More than 98% of intercepted
connections in the Firefox dataset were found based on the
inclusion of ciphers that have never been implemented in NSS,
and 82% of all intercepted connections indicated support for
the heartbeat extension—an immediate giveaway given that no
browsers support the extension. This suggests that our heuristics
are finding handshakes produced by other libraries rather than
misclassifying browser edge cases.

However, while the methodology appears sound, the three
perspectives we studied provide differing numbers on the total
amount of interception. All three perspectives find more than an
order of magnitude more interception than previously estimated,
and we estimate that 5–10% of connections are intercepted.
However, we offer a word of caution on the exact numbers,
particularly for the Cloudflare dataset, where abuse may inflate
the interception rate we observe.

V I . I M PA C T O N S E C U R I T Y

In this section, we investigate the security impact of
HTTPS interception. First, we introduce a grading scale for
quantifying TLS client security. Then, we investigate common
interception products, evaluating the security of their TLS
implementations. Based on these ratings and the features
advertised in Client Hello messages, we quantify the change
in security for intercepted connections.

A. Client Security Grading Scale

There does not exist a standardized rubric for rating
TLS client security. We define and use the following scale
to consistently rate browsers, interception products, and the
connections we observe in the wild:

A: Optimal. The TLS connection is equivalent to a modern
web browser in terms of both security and performance. When
grading cipher suites, we specifically use Chrome’s definition
of “secure TLS” [11].

B: Suboptimal. The connection uses non-ideal settings (e.g.,
non-PFS ciphers), but is not vulnerable to known attacks.

C: Known Attack. The connection is vulnerable to known
TLS attacks (i.e., BEAST, FREAK, and Logjam), or advertises
support for RC4.

F: Severely Broken. The connection is severely broken such
that an active man-in-the-middle attacker could intercept and
decrypt the session. For example, the product does not validate
certificates, or offers export-grade cipher suites.

Our grading scale focuses on the security of the TLS
handshake and does not account for the additional HTTPS
validation checks present in many browsers, such as HSTS,
HPKP, OneCRL/CRLSets, certificate transparency validation,
and OCSP must-staple. None of the products we tested
supported these features. Therefore, products that receive an A
grade for their TLS security likely still reduce overall security
when compared to recent versions of Chrome or Firefox.

B. Testing Security Products

To measure product security, we installed the trial versions
of the corporate proxies, popular client security software, and
malware listed in Section III.5 We then ran the latest version
of Chrome, Internet Explorer, Firefox, and Safari through each
product, visiting a website that executed the following tests:

1) TLS Version. We check the highest version of TLS that
the product supports. We grade any client that supports at
best TLS 1.1 as B, SSLv3 as C, and SSLv2 as F.

2) Cipher Suites. We investigate the cipher suites present in
the Client Hello. We rate any product that does not support

5Product demos could have different security profiles than their production
counterparts. However, during our disclosure process, none of the manufacturers
we contacted indicated this.
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Chrome’s Strong TLS ciphers [11] as B, handshakes that
offer RC4 as C, and any product that advertises broken
ciphers (e.g., export-grade or DES) as F.

3) Certificate Validation. We present a series of untrusted
certificates, including expired, self-signed, and invalidly-
signed certificates. We further test with certificates signed
by CAs with a publicly-known private key (i.e., Super-
fish [58], eDell, and Dell provider roots [13]). We rate
any product that accepts one of these certificates as F.

4) Known TLS Attacks. We check whether clients are
vulnerable to the BEAST, FREAK, Heartbleed, and
Logjam attacks. We rate any vulnerable client as C.6

Corporate Middleboxes The default configurations for eleven
of the twelve middleboxes we tested weaken connection
security, and five of the twelve products introduce severe
vulnerabilities that would enable future interception by a man-
in-the-middle attacker. Ten advertise support for RC4-based
ciphers, two advertise export-grade ciphers, and three have
broken certificate validation (Figure 3). We note that the
installation process for many of these proxies is convoluted,
crash-prone, and at times, non-deterministic. Configuration is
equally confusing, oftentimes with little to no documentation.
For example, Cisco devices allow administrators to customize
permitted cipher suites, but do not provide a list of ciphers to
choose from. Instead, the device provides an undocumented
text box that appears to accept OpenSSL cipher rules (e.g.,
ALL:!ADH:@STRENGTH). We suspect that this poor usability
contributes to the abysmal configurations we see in the wild.

We were not able to acquire a demo or trial of the ZScaler
Proxy, a prominently advertised cloud-based middlebox. Instead,
we investigated the traffic that originated from one of the
seven ZScaler ASes in the Cloudflare dataset.7 We found one
predominant handshake fingerprint that accounts for more than
four times more traffic than the second most popular, and does
not match any popular browsers indicated in the associated
User-Agent strings. We would have rated this handshake at
best B due to the lack of any perfect-forward-secret ciphers.
However, we exclude it from any other analysis, because we
were not able to check for further vulnerabilities.

Client-side Security Software In line with de Carné de
Carnavalet and Mannan [12], we find that nearly all of the client-
side security products we tested reduce connection security
and 15 introduce severe vulnerabilities (Figure 4). We note
that these security grades are a lower bound that assume TLS
stacks have no additional vulnerabilities. However, in practice,
researchers discover bugs in antivirus software regularly. For
Avast alone, ten vulnerabilities have been publicly disclosed
within the last eight months, one of which allowed remote code
execution through carefully crafted certificates [48].

Malware and Unwanted Software Researchers have previ-
ously found that Komodia does not validate certificates [58]
and we find that the NetFilter SDK similarly does not properly
validate certificate chains. We grade both as F: severely broken.

6We tested these products in January–March, 2016, which was approximately
eight months after the Logjam disclosure and eleven months after FREAK.

7We investigated ASes 62907, 55242, 53813, 53444, 40384, 32921, and, 22616.

C. Impact on TLS Traffic

While many security products have insecure defaults,
intercepted connections could have a different security pro-
file. Security might be improved if administrators configure
middleboxes to perform responsible handshakes, or, even with
their poor security, proxies might protect further out-of-date
clients. We investigated the security of intercepted handshakes
based on the parameters advertised in the handshake (e.g.,
TLS version and cipher suites), and in the cases where we
can identify the interception product, its security rating. To
determine the change in security rather than just the security of
the new connection, we calculated the security of the browser
version specified in the HTTP User-Agent and compare that to
the security of the handshake we observe.

Similar to how each of our three networks has a different
interception rate, each vantage point presents a different security
impact. For Firefox, 65% of intercepted connections have
reduced security and an astounding 37% have negligent security
vulnerabilities. 27% of the e-commerce and 45% of the
Cloudflare connections have reduced security, and 18% and
16% are vulnerable to interception, respectively.

Interception products increased the security for 4% of
the e-commerce and 14% of the Cloudflare connections. The
discrepancy in increased security is largely due to temporal
differences in data collection and the deprecation of RC4
cipher suites during this period. When the e-commerce sites
collected data in August 2015, browsers considered RC4 to
be safe. However, between August 2015 and April 2016,
standards bodies began advising against RC4 [50] and both
Chrome and Firebox deprecated the cipher [59]. When grading
Cloudflare connections in May 2016, we labeled connections
that advertised RC4 as C. This results in connections from
older versions of Internet Explorer and Safari being marked
insecure, and proxies improving the security for an increased
number of connections.

Corporate Middleboxes During our earlier analysis of cor-
porate proxies, we found that many network middleboxes
inject HTTP headers, such as X-Forwarded-For and Via,
to assist managing simultaneous proxied connections. We
analyzed the connections in the e-commerce dataset with proxy-
related headers to better understand the security of corporate
middleboxes compared to client-side software. We find that
connection security is significantly worse for middleboxes
than the general case. As can be seen in Figures 14 and 15,
security is degraded for 62.3% of connections that traverse
a middlebox and an astounding 58.1% of connections have
severe vulnerabilities.

We note a similar phenomenon in the Firefox data where
we manually investigated the top 25 ASes with more than
100K connections, the highest interception rates, and a single
predominant interception fingerprint. We primarily find financial
firms, government agencies, and educational institutions. With
the exception of one bank, 24 of the top 25 ASes have
worsened security due to interception. For 12 of the 25 ASes,
the predominant TLS handshake includes export-grade cipher
suites, making them vulnerable to future interception by an
active man-in-the-middle attacker.
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Network Increased
Security

Decreased
Security

Severely
Broken

E-commerce (All Traffic) 4.1% 26.5% 17.7%
E-commerce (Middleboxes) 0.9% 62.3% 58.1%
Cloudflare 14.0% 45.3% 16.0%
Firefox Updates 0.0% 65.7% 36.8%

Fig. 14: Impact of Interception—We summarize the secu-
rity impact of HTTPS interception, comparing client–proxy
connection security with proxy–server connection security.

Dataset
Original

Security

New Security

→A →B →C →F

Firefox A→ 34.3% 16.8% 12.2% 36.8%

E-commerce Sites:

All Traffic

A→ 57.1% 2.9% 5.6% 8.1%

B→ 2.7% 10.2% 1.2% 8.3%

C→ 0.6% 0.4% 1.0% 0.3%

F→ 0.0% 0.2% 0.1% 1.0%

E-commerce Sites:

Middleboxes

A→ 13.5% 3.0% 0.8% 18.0%

B→ 0.7% 23.3% 0.6% 37.8%

C→ 0.1% 0.1% 0.0% 2.2%

F→ 0.0% 0.0% 0.0% 0.0%

Cloudflare

A→ 17.3% 1.1% 29.7% 10.0%

B→ 0.0% 0.0% 0.0% 0.0%

C→ 9.4% 3.3% 22.0% 4.5%

F→ 0.8% 0.1% 0.4% 1.5%

Fig. 15: Change in Security—We calculate the change in
connection security based on the parameters advertised in the
Client Hello message and the security of the browser in the
HTTP User-Agent header.

V I I . D I S C U S S I O N

While the security community has long known that security
products intercept TLS connections, we have largely ignored the
issue. We find that interception is occurring more pervasively
than previously estimated and in many cases, introduces
significant vulnerabilities. In this section, we discuss the
implications of our measurements and make recommendations
for both vendors and the security community.

We need community consensus. There is little consensus
within the security community on whether HTTPS interception
is acceptable. On the one hand, Chrome and Firefox have
provided tacit approval by allowing locally installed roots to
bypass key pinning restrictions [34]. However, at the same
time, discussions over protocol features that facilitate safer
interception have been met with great hostility within standards
groups [35], [37]. These communities need to reach consensus
on whether interception is appropriate in order to develop
sustainable, long-term solutions.

We should reconsider where validation occurs. Many HTTPS
security features expect connections to be end-to-end by

mixing the HTTP and TLS layers, and by implementing
HTTPS features in browser code rather than in TLS libraries.
For example, to overcome weaknesses in existing revocation
protocols, Firefox ships with OneCRL [43] and Chrome,
CRLSets [24]. Both of these solutions increase browser security
in the typical end-to-end case. However, these solutions provide
no protection in the presence of a TLS proxy and because the
solution is not part of the TLS protocol itself, TLS libraries
do not implement these safe revocation checks. In a second
example, HPKP directives are passed over HTTP rather than
during the TLS handshake. Browsers cannot perform HPKP
validation for proxied connections because they do not have
access the destination certificate and proxies do not perform
this validation in practice.

While it is possible for proxies to perform this additional
verification, they are not doing so, and in many cases vendors
are struggling to correctly deploy existing TLS libraries,
let alone implement additional security features. Given this
evidence, our community needs to decide what roles should
be carried out by the browser versus TLS implementation.
If we expect browsers to perform this additional verification,
proxies need a mechanism to pass connection details (i.e.,
server certificate and cryptographic parameters) to the browser.
If we expect proxies to perform this validation, we need to
standardize these validation steps in TLS and implement them
in standard libraries. Unfortunately the current situation, in
which we ignore proxy behavior, results in the worst case
scenario where neither party is performing strict validation.

Cryptographic libraries need secure defaults. Several proxies
deployed TLS libraries with minimal customization. Unfortu-
nately the default settings for these libraries were vulnerable
rendering the middlebox vulnerable. Client libraries and web
servers need to prioritize making their products safe by default.
We applaud OpenSSL’s recent decision to remove known-
broken cipher suites [2]. However, this change should have
occurred more than a decade earlier and libraries continue to
accept other weak options. Our community should continue
restricting default options to known safe configurations.

Antivirus vendors should reconsider intercepting HTTPS. An-
tivirus software operates locally and already has access to the
local filesystem, browser memory, and any content loaded over
HTTPS. Given their history of both TLS misconfigurations [12]
and RCE vulnerabilities [48], we strongly encourage antivirus
providers to reconsider whether intercepting HTTPS is respon-
sible.

Security companies are acting negligently. Many of the
vulnerabilities we find in antivirus products and corporate
middleboxes—such as failing to validate certificates and
advertising broken ciphers—are negligent and another data
point in a worrying trend of security products worsening
security rather than improving it [12], [17]. We hope that
by disclosing vulnerabilities in existing products, we can
encourage manufacturers to patch problems. We urge companies
to prioritize the security of their TLS implementations and to
consider the pace at which the HTTPS ecosystem evolves and
whether they can keep up with the necessary updates.

Do not rely on client configuration. Because cryptographic
parameters must be supported by both the client and server,
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the security community has largely ignored HTTPS servers’
lenient cipher support with the implied understanding that
browser vendors will only advertise secure parameters. In
2015, Durumeric et al. found that nearly 37% of browser-
trusted HTTPS servers on the IPv4 address space supported
RSA export ciphers [16] despite their known weaknesses and
discontinued use. It was only after the discovery of the FREAK
attack—a bug in OpenSSL that allowed an active attacker to
downgrade connections to export-grade cryptography—that
operators began to actively disable export cipher suites.

While modern browsers are not vulnerable to active down-
grade attacks, nearly two thirds of connections that traverse
a network middlebox advertise export ciphers and nearly 3%
of all HTTPS connections to the e-commerce sites included
at least one export-grade cipher suite. While these products
would optimally not be vulnerable, their risk can be reduced by
encouraging websites to disable weak ciphers. Similarly, some
interception products support secure ciphers, but do not order
them correctly. In this situation, servers that explicitly choose
strong ciphers will negotiate a more secure connection than
those that honor client preference. We need to practice defense-
in-depth and encourage both clients and servers to select secure
parameters instead of relying on one side to always act sanely.

Administrators need to test middleboxes. Many of the
products we tested support more secure connections with
additional configuration. Unfortunately, this does not appear
to be happening in practice. While manufacturers clearly
need to improve their default settings, we also encourage
the administrators who are deploying proxies to test their
configurations using sites such as Qualys SSL Lab’s client
test, https://howsmyssl.com, and https://badssl.com. To incen-
tivize better software, servers could consider checking client
configuration and rejecting insecure clients.

V I I I . R E L AT E D W O R K

There have been several recent studies on fingerprinting
TLS connections, HTTPS interception, and safe interception
protocols:

Fingerprinting TLS Handshakes While there has been little
rigorous study on TLS handshake fingerprinting, several groups
have previously suggested the idea. Ristić first described the
approach in 2009 [52]. Later, in 2012, Majkowski implemented
SSL fingerprinting in p0f [36]. In 2015, Husá et al. used client
fingerprinting to broadly describe the types of HTTPS traffic
on their institutional network [28], and in 2016, Brotherston
showed how desktop applications could be identified by their
Client Hello messages [9]. Concurrent to our work, Cisco
showed that malware uses different TLS parameters than
browsers [3]. To the best of our knowledge, no groups have
used the methodology to measure HTTPS interception. We also
note that we take a slightly different approach than described in
these prior works in which we look for inconsistencies between
the HTTP and TLS layers rather than trying to passively identify
handshakes seen on the wire.

Measuring HTTPS Interception Several groups have mea-
sured the prevalence of TLS interception by deploying Flash-
based measurements on popular websites or by purchasing ads.
In early 2014, Huang et al. analyzed 3M SSL connections to

Facebook and found that 0.2% of connections were intercepted
by a variety of antivirus software, corporate content filters,
and malware [27]. A year later in 2015, O’Neill et al.
deployed a Google AdWords campaign in which they observed
15.2M connections and found 0.4% of TLS connections are
intercepted—nearly double the number found by Facebook [46].
We find approximately an order of magnitude more interception
at each of our three vantage points.

It is not immediately evident why our numbers differ from
these previous studies. It is possible that some of our numbers—
particularly for Cloudflare—are overestimates due to abuse.
However, we note that the number of intercepted connections
found in these studies is less than the number of connections
with Blue Coat HTTP headers alone and less than half of
the number of connections that include proxy-related HTTP
headers. There may be bias introduced by using Flash, which
browsers are in the process of deprecating and is not available
on many mobile devices. Facebook may be blocked on the
types of corporate networks that have deployed TLS inspection,
and some malware may block connections to ad providers in
order to inject their own ads.

The two methodologies have other differences. Studying
the certificates presented to clients provides a limited view on
the security impacts of MITM because the client is not able
to observe the security properties of the outgoing connection
to the destination web server. However, because clients can
access the certificate presented by the proxy, there is more data
on the product that intercepted the connection.

Client Security Several studies have investigated the security
of specific TLS clients. Georgiev et al. analyzed the security
of non-browser software that validates SSL certificates by
installing TLS clients and validating their behavior [21]. They
identify numerous vulnerabilities in TLS clients, including
Amazon’s EC2 client, Amazon and PayPal’s SDKs, and a
number of other e-commerce products. They conclude that these
vulnerabilities are the result of poorly designed cryptographic
libraries.

de Carné de Carnavalet and Mannan demonstrated that
many popular Windows antivirus applications perform TLS
traffic inspection that weakens connection security [12]. We
extend this work by investigating additional products, showing
that Mac connections have worse security than their Windows-
based counterparts, and fingerprinting their connections. There
have been repeated discussions about the theoretical danger of
network middleboxes that intercept TLS connections. Dormann
details these potential risks and lists devices that perform
interception [15], but to the best of our knowledge, no
one has systematically characterized these devices. We build
on this investigation, testing devices for vulnerabilities and
fingerprinting their behavior.

Alternatives to Interception Researchers have proposed alter-
natives to TLS interception and extensions to help middleboxes
safely intercept connections. In the simplest case, the HTTP 2.0
Explicit Trusted Proxy RFC [26] requires middleboxes to
explicitly notify the client of interception. The proposed TLS
Proxy Server Extension [38] extends the idea, requiring the
proxy to indicate the interception, but to additionally relay
proxy–server session information back to the client, such
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that the client can validate the server’s identify and perform
additional validation.

Naylor et al. introduced multi-context TLS (mcTLS) [44],
an extended version of TLS that requires endpoints to ex-
plicitly specify permitted middleboxes in order to securely
authenticate each hop and cryptographically control exactly
what data middleboxes can access. Sherry et al. eschewed any
plaintext data access for middleboxes and developed BlindBox,
a cryptographic protocol that supports both intrusion and
data exfiltration detection through searchable encryption [54].
Lan et al. extended BlindBox with Embark, which further
optimized keyword and prefix matching searchable encryption
schemes [33].

I X . R E S P O N S I B L E D I S C L O S U R E

In the course of analyzing corporate middleboxes and
client-side security software, we uncovered a range of TLS
implementation errors, many of which allow connections to
be intercepted by a man-in-the-middle attacker. We disclosed
these weaknesses to manufacturers in August 2016. Several
manufacturers indicated that they deployed updates that protect
against the Logjam attack after our testing but before disclosure.
Others indicated plans to deprecate RC4 and move to modern
cipher suites. In many cases, we received no response and in
other cases, we were unable to convince manufacturers that
TLS vulnerabilities such as Logjam required patching. One
company would not accept our vulnerability report without a
product serial number, and several indicated that secure product
configuration was a customer responsibility and that they would
not be updating their default configuration. Figures 3 and 4
show scores prior to disclosure.

X . C O N C L U S I O N

In this paper, we conducted the first comprehensive study
on the security impact of HTTPS interception in the wild.
We characterized the TLS handshakes produced by modern
browsers, common security products, and malware, finding
that products advertise varied TLS parameters. Building on
this observation, we constructed a set of heuristics that allow
web servers to detect HTTPS interception and identify popular
interception products. We deployed these heuristics on three
diverse networks: (1) Mozilla Firefox update servers, (2) a set
of popular e-commerce sites, and (3) the Cloudflare content
distribution network. In each case, we find more than an order of
magnitude more interception than previously estimated, ranging
from 4–11%. As a class, interception products drastically
reduce connection security. Most concerningly, 62% of traffic
that traverses a network middlebox has reduced security and
58% of middlebox connections have severe vulnerabilities. We
investigated popular antivirus and corporate proxies, finding that
nearly all reduce connection security and that many introduce
vulnerabilities (e.g., fail to validate certificates). While the
security community has long known that security products
intercept connections, we have largely ignored the issue,
believing that only a small fraction of connections are affected.
However, we find that interception has become startlingly
widespread and with worrying consequences. We hope that by
bringing these issues to light, we can encourage manufacturers
to improve their security profiles and prompt the security
community to discuss alternatives to HTTPS interception.
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